DPREP: Подготовка данных для Data Mining на Python

Практический курс Подготовка данных для Data Mining на языке Python

Ближайшая дата курса по подготовке данных к ML-моделированию и анализу 29 сентября – 02 октября
   
   
Стоимость обучения 48.000 рублей

РегистрацияПрактический курс для статистиков, начинающих Data Scientist’ов, архитекторов Data Lake, аналитиков и инженеров данных по подготовке Big Data к машинному обучению, моделированию и интеллектуальному анализу на примере использования Apache Spark и Python.

Что такое подготовка данных в процессе Data Mining и зачем она нужна

Подготовка данных выполняется при загрузке информации в корпоративное озеро (Data Lake), интеллектуальном анализе данных (Data Mining) и моделировании в рамках машинного обучения (Machine Learning). Вообще процесс сбора и подготовки данных – один из самых трудоемких и сложных этапов в анализе информации, который занимает до 80% времени. Сама подготовка данных состоит из следующих этапов:

  • выборка;
  • очистка;
  • генерация признаков;
  • интеграция;
  • форматирование.

Статистические методики и специальное программное обеспечение позволяют значительно сократить временные и финансовые затраты всех этих процессов, а также повысить качество конечных результатов.

Кому нужны курсы по подготовке данных

Наши практические курсы по подготовке данных к Data Mining ориентированы на статистиков, исследователей, начинающих Data Scientist’ов, специалистов по машинному обучению, архитекторов Data Lake, аналитиков и инженеров данных, которые отвечают за сбор, подготовку и очистку Big Data. Курс позволит вам получить “продвинутые” знания и прикладные навыки подготовки”сырых” датасетов для получения качественных результатов ML-моделирования и интеллектуального анализа данных.  

Также курс “Подготовка данных для Data Mining на Python” будет полезен специалистам по работе с большими данными, разработчикам и руководителям, которые хотят понять подходы к подготовке данных для решения бизнес-задач с помощью Machine Learning и получить практические навыки в этой области.

Если вы хотите разобраться с основами Data Mining и научиться самостоятельно формировать датасеты для машинного обучения, а также освоить инструменты Apache Spark и Python для статистической обработки больших данных, вам необходим этот курс подготовка данных для Data Mining.

Предварительный уровень подготовки:

 

Как устроены курсы по подготовке данных

Продолжительность: 4 дня, 32 академических часа
Документ об окончании курса: сертификат учебного центра.

Данный курс является введением в подготовку данных для машинного обучения (Machine Learning) и интеллектуального анализа (Data Mining). В курсе описаны основные особенности в данных, с которыми приходится сталкиваться при их подготовке для решения бизнес-задач с помощью алгоритмов машинного обучения. Также курс включает изучение углубленных возможностей работы с “сырыми” данными, чтобы обеспечить высокое качество  результатов ML-моделирования и интеллектуального анализа данных.

Вы познакомитесь с расширенными библиотеками языка Python и PySpark: их возможностями и ограничениями для решения таких задач по подготовке данных к Machine Learning и Data Mining, как как первичный анализ, корректировка особенностей, получение описательных статистик и визуализация, формирование дополнительного признакового пространства и выявление наиболее значимых признаков.

Самостоятельно выполненный итоговый проект по полному циклу подготовки данных поможет вам закрепить приобретенные знания и навыки, а также глубже погрузиться в практику науки о данных (Data Science).

Регистрация

 

Программа курса «Подготовка данных для Data Mining на Python»

1. Продвинутые возможности библиотек языка Python для обработки и визуализации данных

Цель: познакомить участников с продвинутыми возможностями основных библиотек языка Python для обработки и визуализации данных и сформировать необходимые навыки по работе с данными в рассматриваемых библиотеках

Теоретическая часть:

  • изучение возможностей библиотек языка Python для обработки (Pandas, NumPy, SciPy, Sklearn) и визуализации (matplotlib, seaborn) данных.
  • обзор основных приемов по работе с данными:
    • первичный анализ данных
    • получение описательных статистик
    • изменение типа данных
    • построение сводных таблиц
    • визуализация статистических характеристик данных (гистограммы, графики плотностей распределений, тепловые карты, «ящики с усами» и «виолончели»)

Практическая часть: решение практических задач обработки и визуализации данных на примере табличных данных.

2. Библиотеки Python в корректировании типичных особенностей в данных

Цель: познакомить участников с основными особенностями в данных, с которыми приходится сталкиваться в реальных задачах, и научить успешно их корректировать с использованием библиотек языка Python. Продемонстрировать применение указанных подходов в случае промышленного варианта подготовки данных на примере использования Apache Spark (PySpark).

Теоретическая часть:

  • обзор типичных особенностей в данных и подходов к их корректировке:
    • отсутствующие значения
    • выбросы
    • дубликаты
  • подготовка данных для использования в алгоритмах машинного обучения:
    • нормализация числовых данных
    • преобразование категориальных значений
    • работа с текстовыми данными

Практическая часть: подготовка «сырых» данных для использования в алгоритме машинного обучения с подробным анализом влияния каждой особенности датасета на конечный результат работы алгоритма

3. Подходы к построению дополнительного признакового пространства на основе исходных данных

Цель: познакомить участников с основными подходами получения дополнительных и наиболее значимых характеристик из исходных данных. Продемонстрировать влияние дополнительных признаков на улучшение метрик качества работы алгоритмов машинного обучения с использованием библиотеки Sklearn

Теоретическая часть:

  • обзор подходов формирования дополнительного признакового пространства и выбора наиболее значимых характеристик
    • увеличение размерности исходного признакового пространства
      • постановка задачи в случае обучения с учителем – с использованием целевой переменной
      • постановка задачи в случае обучения без учителя
    • уменьшение размерности исходного признакового пространства
  • подробный анализ задачи увеличения размерности исходного признакового пространства в случае обучения с учителем:
    • статистические методы фильтрации признаков в задачах классификации и регрессии
    • методы машинного обучения как инструменты для получения наиболее значимых признаков в данных

 Практическая часть: решение прикладной задачи построения дополнительного признакового пространства и получения наиболее значимых признаков с подробным анализом влияния рассмотренных теоретических подходов на конечный результат работы алгоритмов машинного обучения

4. Проектная работа

Цель: закрепить полученные слушателями курса знания по подготовке данных.

Теоретическая часть: краткий обзор пройденного материала со ссылками на рабочие блокноты, в которых решалась та или иная задача подготовки данных.

Практическая часть: самостоятельное решение задачи подготовки датасета для машинного обучения с использованием собственной базы данных или на лабораторном наборе от организаторов курса. Итоговый разбор работ слушателей курса.

РегистрацияСкачать программу курса «Подготовка данных для Data Mining на Python» в формате pdf