Все курсы
Разработка и внедрение ML-решений
Ближайшая дата курса | 16 октября 2023 22 января 2024 |
|
Стоимость обучения | 49 500 руб. | Регистрация |
Длительность обучения | 24 ак.часов | |
Код курса | MLOPS |
Благодаря стремительному развитию машинного обучения, MLOps-инженеры сегодня — одни из самых востребованных и высокооплачиваемых специалистов в области Data Science.
MLOps – это культура и набор практик комплексного и автоматизированного управления жизненным циклом систем машинного обучения, объединяющие их разработку (Development) и операции эксплуатационного сопровождения (Operations), в т.ч. интеграцию, тестирование, выпуск, развертывание и управление инфраструктурой.
MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. К таким средствам относятся рассматриваемые в нашем курсе Git, MlFlow, DVC. MLOps позволит избежать распространенных ошибок и проблем, с которыми сталкиваются Data Scientist’ы, работающие по классическим фазам CRISP-DM. Организационные приемы MLOps должны быть независимыми от языка, фреймворка, платформы и инфраструктуры.
MLOps поможет улучшить следующие аспекты ML-проектов:
- унифицировать цикл выпуска моделей машинного обучения и созданных на их основе программных продуктов;
- автоматизировать тестирование артефактов Machine Learning, таких как проверка данных, тестирование самой ML-модели и ее интеграции в production-решение;
- внедрить гибкие принципы в проекты машинного обучения;
поддерживать модели машинного обучения и наборы данных для их в системах CI/CD/CT; - сократить технический долг по ML-моделям.
Аудитория: Python-разработчики, дата-аналитики, инженеры данных, менеджеры AI-продуктов и руководители (тимлиды) ML-команд.
О курсе: В курсе рассмотрены подходы к разработке ML-решений + средства их реализации и внедрения в
production. Вы пройдете все шаги создания ML-продукта от сбора данных до интеграции ML-модели в
эксплуатацию. Познакомитесь с популярными инструментами командной разработки: Git, MLFlow, DVC.
Узнаете главные архитектуры ML-решений и основы менеджмента DS-проектов*.
Офлайн-обучение или онлайн-курс проходят в формате интерактивного семинара: даже в дистанционном режиме с вами занимается живой преподаватель — рассказывает теорию, дает практические задания и проверяет результаты выполнения. В качестве примеров рассматриваются кейсы из реального бизнеса и лучшие практики MLOps.
*В расширенную версию курса (40 ак.часов) включены основы управления DS-проектом (Часть 6).
Продолжительность курса:
— базовая версия: 24 академических часа, 6 дней
— расширенная версия (включая часть 6 по менеджменту DS-проектов): 40 академических часов, 10 дней
Программа курса «Графовые алгоритмы. Бизнес-приложения»
Часть 1. Задачи и инструменты машинного обучения
Цель:
- дать представление о постановках задач машинного обучения, а также современных методах и
инструментах их решения; - продемонстрировать отличия от задач, для решения которых достаточно классических методов и
алгоритмов (без ML)
Теоретическая часть: погружаемся в классические постановки задач машинного обучения, методы их
решения, метрики качества для оценки точности результатов, знакомимся с инструментами
Практическая часть: осваиваем инструментарий и настраиваем среды разработки, решаем небольшой набор ознакомительных задач
Домашняя работа: решение задачи классификации/регрессии.
Часть 2. Основные этапы разработки ML-решений: от прототипа до подготовки к production
Цель:
- продемонстрировать подходы к прототипированию и основные требования, которым должен удовлетворять прототип;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в продуктивной среде;
Теоретическая часть: демонстрация процесса разработки ML-решения, от сбора данных до сериализации ML-модели.
Практическая часть: пример построения сквозного ML-решения.
Домашняя работа: построение индивидуального сквозного ML-решения.
Часть 3. MLOps. Экосистема разработки ML-продуктов
Цель:
- продемонстрировать необходимость инструментов командной разработки ML-решений;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в production;
Теоретическая часть: демонстрация примеров необходимости внедрения MLOps- инструментов.
Практическая часть: используем Git, MLFlow и dvc в сквозном примере
Домашняя работа: используем Git, MLFlow и dvc в индивидуальном сквозном ML-решении
Часть 4. Подходы к работе с данными на каждом этапе разработки ML-решений
Цель:
- показать основные типы данных и методы работы с ними;
- продемонстрировать подходы к поиску, хранению и обработке данных на этапах разработки ML-решений;
- основные вопросы разметки данных и их подготовки для обучения и использования в production
Теоретическая часть: знакомимся с данными в виде таблиц, текста, картинок, аудио. Отвечаем на вопросы, как и чем обрабатывать и производить разметку в каждом отдельном случае. Погружаемся в мир Pandas, PostgreSQL, Apache Spark, Hive для обработки и хранения данных. Смотрим на AirFlow как на инструмент для планирования и выполнения задач по обработке данных.
Практическая часть: продолжаем развитие сквозного ML-решения, увеличиваем объем данных, переезжаем в БД, размечаем данные, настраиваем AirFlow на получение и подготовку данных для ML
Домашняя работа: развиваем индивидуальное сквозное ML-решение.
Часть 5. Обзор архитектурных решений для интеграции в production. Использование облачных сервисов
Цель:
- показать основные подходы по интеграции решений в production: монолит или микросервисы, высоконагруженные системы, локальный сервер или облачная платформа;
- продемонстрировать плюсы и минусы использования облачных сервисов на каждом этапе разработки ML-решений;
- погрузиться в особенности микросервисных архитектур c использованием контейнеризации;
- проработать вопрос использования коробочных решений на примере TF serving;
- интегрировать решение на облачную платформу AWS.
Теоретическая часть: знакомимся с интеграцией в production. Рассмотрим различные варианты архитектур ML-решений. Рассматриваем микросервисную архитектуры с использованием контейнеризации (Docker и K8s). Дружимся с AWS.
Практическая часть: упаковываем сквозное ML-решение в контейнер и отправляем в AWS, обновляем текущее решение с добавлением TF serving.
Домашняя работа: развиваем индивидуальное сквозное ML-решение.
Часть 6. Обзор этапов и структуры ML-проекта* (входит в расширенную версию курса — 40 ак.часов)
Цель:
- показать весь ML-проект целиком: основные этапы и ресурсы, необходимые для реализации проекта;
- продемонстрировать цикличность в жизненном цикле ML-решения;
- отметить важность мониторинга и дэшбордов для поддержки и развития ML-решений.
Теоретическая часть: подвести итоги и взглянуть на ML-проект в целом: основные составляющие успешного проекта, количество и состав команды на каждом этапе разработки ML-решения, технологии и инструменты для разработки ML-решения и управления ML-проектом. Менеджмент DS-команды.
Практическая часть: настраиваем DVC и MLFlow, создаем репозиторий в Git, разворачиваем CI/CD для сквозного ML-решения
Домашняя работа: завершаем индивидуальный проект.