Главная страница » Services » Курсы » MLOPS: Разработка и внедрение ML-решений
MLOps: Разработка и внедрение ML-решений
Код курса | Даты начала курса | Стоимость обучения | Длительность обучения | Формат обучения |
---|---|---|---|---|
MLOPS | 10 марта 2025 02 июня 2025 01 сентября 2025 |
54 000 руб. | 24 ак.часов | Дистанционный |
Что такое MLOps
Благодаря стремительному развитию машинного обучения, MLOps-инженеры сегодня — одни из самых востребованных и высокооплачиваемых специалистов в области Data Science.
MLOps – это культура и набор практик комплексного и автоматизированного управления жизненным циклом систем машинного обучения, объединяющие их разработку (Development) и операции эксплуатационного сопровождения (Operations), в т.ч. интеграцию, тестирование, выпуск, развертывание и управление инфраструктурой.
MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. К таким средствам относятся рассматриваемые в нашем курсе Git, MlFlow, DVC. MLOps позволит избежать распространенных ошибок и проблем, с которыми сталкиваются Data Scientist’ы, работающие по классическим фазам CRISP-DM. Организационные приемы MLOps должны быть независимыми от языка, фреймворка, платформы и инфраструктуры.
MLOps поможет улучшить следующие аспекты ML-проектов:
- унифицировать цикл выпуска моделей машинного обучения и созданных на их основе программных продуктов;
- автоматизировать тестирование артефактов Machine Learning, таких как проверка данных, тестирование самой ML-модели и ее интеграции в production-решение;
- внедрить гибкие принципы в проекты машинного обучения; поддерживать модели машинного обучения и наборы данных для их в системах CI/CD/CT;
- сократить технический долг по ML-моделям.
Программа курса "MLOps: Разработка и внедрение ML-решений"
Часть 1. Задачи и инструменты машинного обучения
Цель:
-
- дать представление о постановках задач машинного обучения, а также современных методах и инструментах их решения;
- продемонстрировать отличия от задач, для решения которых достаточно классических методов и алгоритмов (без ML)
Теоретическая часть: погружаемся в классические постановки задач машинного обучения, методы их решения, метрики качества для оценки точности результатов, знакомимся с инструментами
Практическая часть: осваиваем инструментарий и настраиваем среды разработки, решаем небольшой набор ознакомительных задач
Домашняя работа: решение задачи классификации/регрессии.
Часть 2. Основные этапы разработки ML-решений: от прототипа до подготовки к production
Цель:
-
- продемонстрировать подходы к прототипированию и основные требования, которым должен удовлетворять прототип;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в продуктивной среде;
Теоретическая часть: демонстрация процесса разработки ML-решения, от сбора данных до сериализации ML-модели.
Практическая часть: пример построения сквозного ML-решения.
Домашняя работа: построение индивидуального сквозного ML-решения.
Часть 3. MLOps. Экосистема разработки ML-продуктов
Цель:
-
- продемонстрировать необходимость инструментов командной разработки ML-решений;
- показать этапы доработки прототипа при подготовке MVP;
- дать представление о возможных подходах к интеграции решения в production;
Теоретическая часть: демонстрация примеров необходимости внедрения MLOps- инструментов.
Практическая часть: используем Git, MLFlow и dvc в сквозном примере.
Домашняя работа: используем Git, MLFlow и dvc в индивидуальном сквозном ML-решении
Часть 4. Подходы к работе с данными на каждом этапе разработки ML-решений
Цель:
-
- показать основные типы данных и методы работы с ними;
- продемонстрировать подходы к поиску, хранению и обработке данных на этапах разработки ML-решений;
- основные вопросы разметки данных и их подготовки для обучения и использования в production
Теоретическая часть: знакомимся с данными в виде таблиц, текста, картинок, аудио. Отвечаем на вопросы как и чем обрабатывать и производить разметку в каждом отдельном случае. Погружаемся в мир Pandas, PostgreSQL, Apache Spark, Hive для обработки и хранения данных. Смотрим на AirFlow как на инструмент для планирования и выполнения задач по обработке данных.
Практическая часть: продолжаем развитие сквозного ML-решения, увеличиваем объем данных, переезжаем в БД, размечаем данные, настраиваем AirFlow на процесс получения и подготовки данных для обучения.
Домашняя работа: развиваем индивидуальное сквозное ML-решение.
Часть 5. Обзор архитектурных решений для интеграции в production. Использование облачных сервисов
Цель:
-
- показать основные подходы по интеграции решений в production: монолит или микросервисы, высоконагруженные системы, локальный сервер или облачная платформа;
- продемонстрировать плюсы и минусы использования облачных сервисов на каждом этапе разработки ML-решений;
- погрузиться в особенности микросервисных архитектур c использованием контейнеризации;
- проработать вопрос использования коробочных решений на примере TF serving;
- интегрировать решение на облачную платформу Yandex Cloud.
Теоретическая часть: знакомимся с интеграцией в production. Рассмотрим различные варианты архитектур ML-решений. Рассматриваем микросервисную архитектуры с использованием контейнеризации (Docker и K8s). Интеграция с Yandex Cloud.
Практическая часть: упаковываем сквозное ML-решение в контейнер и отправляем в AWS, обновляем текущее решение с добавлением TF serving.
Домашняя работа: развиваем индивидуальное сквозное ML-решение.
Часть 6. Обзор этапов и структуры ML-проекта* (входит в расширенную версию курса — 40 ак.часов)
Цель:
-
- показать весь ML-проект целиком: основные этапы и ресурсы, необходимые для реализации проекта;
- продемонстрировать цикличность в жизненном цикле ML-решения;
- отметить важность мониторинга и дэшбордов для поддержки и развития ML-решений.
Теоретическая часть: подвести итоги и взглянуть на ML-проект в целом: основные составляющие успешного проекта, количество и состав команды на каждом этапе разработки ML-решения, технологии и инструменты для разработки ML-решения и управления ML-проектом. Менеджмент DS-команды.
Практическая часть: настраиваем DVC и MLFlow, создаем репозиторий в Git, разворачиваем CI/CD для сквозного ML-решения.
Домашняя работа: завершаем индивидуальный проект.
Кому нужно обучение по методам и средствам MLOps
Цель курса:
Аудитория:
Предварительный уровень подготовки:
- Опыт программирования на Python
- Основы анализа данных
Как проходят курсы
Офлайн-обучение или онлайн-курс проходят в формате интерактивного семинара: даже в дистанционном режиме с вами занимается живой преподаватель - рассказывает теорию, дает практические задания и проверяет результаты выполнения. В качестве примеров рассматриваются кейсы из реального бизнеса и лучшие практики MLOps.
*В расширенную версию курса (40 ак.часов) включены основы управления DS-проектом (Часть 6).
Продолжительность курса:
- базовая версия: 24 академических часа, 6 дней
- расширенная версия (включая часть 6 по менеджменту DS-проектов): 40 академических часов, 10 дней
Соотношение теории к практике: 40/60
По завершении обучения вы получите
Кто проводит курс
Ермилов Дмитрий
Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
- Ведущий Data Scientist в ФГУП “Центр информационных технологий”, Москва
- Руководитель программ в Университете искусственного интеллекта, Москва.
- Кандидат наук (2017 год, Московский государственный университет им. М.В. Ломоносова, Москва)
География наших клиентов
- Москва
- Санкт-Петербург
- Нижний Новгород
- Екатеринбург
- Казань
- Краснодар
- Красноярск
- Перьм
- Челябинск
- Новосибирск
- Томск
- Тверь
- Саратов
- Самара
- Ростов-на-Дону
- Хабаровск
- Волгоград
- Калуга
- Якутск
- Севастополь
- Тольяти
- Владивоссток
- Тюмень
- Южно-Сахалинск
- Уфа
- Ставрополь
- Минск
- Алматы
- Астана
- Ташкент
- Душанбе
- Бешкек
Контакты авторизированного учебного центра
«Школа Больших Данных»
Адрес:
127576, г. Москва, м. Алтуфьево,
Илимская ул. 5 корпус 2, офис 319, БЦ «Бизнес-Депо»
Телефон:
+7 (495) 414-11-21
+7 (995) 100-45-63
E-mail:
Часы работы:
Понедельник - Пятница: 09.00 – 18.00
Остались вопросы?
Звоните нам +7 (495) 41-41-121 или отправьте сообщение через контактную форму. Также вы можете найти ответы на ваши вопросы в нашем сборнике часто задаваемых вопросов.