Продолжаем говорить о сверточных нейронных сетях (CNN) с использованием Python-фреймворка TensorFlow в рамках задач Computer Vision. Для понимания работы глубоких сверточных сетей может пригодиться визуализация. В этой статье мы расскажем,…
Метка: распознавание образов

ТОП-4 моделей машинного обучения для компьютерного зрения
Transfer learning может стать отличным решением, когда нет больших вычислительных ресурсов для обучения моделей Machine Learning, а также когда нет достаточного количества данных. Это также касается задач компьютерного зрения (Computer…

ЗАЧЕМ ВАМ ДООБУЧЕНИЕ: как повысить точность ML-модели
В предыдущей статье мы говорили об одном из методов Transfer Learning — выделении признаков. Сегодня продолжим разговор о трансферном обучении и затронем ещё один метод использования предварительно обученных архитектур —…

Соединяем архитектуру VGG16 со своим классификатором в TensorFlow
В предыдущей статье мы говорили о выделение признаков (feature extraction), как об одном из методов Transfer Learning. Сегодня изучим второй способ использования предварительно обученной модели в рамках feature extraction. Читайте…

Как повысить точность классификатора с Transfer Learning
Продолжаем говорить о сверточных нейронных сетях (CNN). Сегодня расскажем вам об одном из методов Transfer Learning — выделение признаков (feature extraction). Читайте в этой статье: использование предварительно обученной модели (VGG16)…

Data augmentation и сверточные нейронные сети в TensorFlow
Продолжим говорить о сверточных нейронных сетях (CNN) в TensorFlow. В этой статье мы расскажем вам, как обучать модели CNN на данных с цветными изображениями кошек и собак. Читайте у нас:…